
Combinatorial Networks
Week 12, June 3-4

• Theorem(Konig). For bipartite G, χ′(G) = ∆(G).

• Theorem(Vizing). For general G, ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

• Fact: χ′l(G) ≥ χ′(G) ≥ ∆(G).

• Theorem(Kahn). For general G, χ′l(G) ≤ (1 + o(1))χ′(G) ≤ ∆(G) + o(∆(G)).

• Theorem(Dinitz \ Galvin). For bipartite G, χ′l(G) = χ′(G) = ∆(G). Proof. By
Konig’s Theorem, χ′(G) = ∆(G).

It suffices to show:

• Theorem. Given bipartite G of maximum degree ∆ and list L = {Le}e∈E(G), where for
each |Le| = ∆, there is a legal coloring of E(G) for the list.

• Lemma. Suppose H has an orientation D s.t. for each v ∈ V (H), d+D(v) ≤ |Lv|, andd every
induced subgraph of D has a kernel. Then there is a legal coloring of V (G) from the list
{Lv}v∈E(G).

Here, we work on L(G), and want to achieve 2 goals,

Goal 1:Find an orientation of L(G) s.t. d+D(v) < ∆ for ∀e ∈ V (L(G)) = E(G).

Goal 2:Any induced subgraph of D has a kernel.

• Theorem(Gale-Shopley). For any bipartite G and set of preferences of V (G), G has a
stable matching.

Define: For any v ∈ V (H), its preference is a linear ordering on its neighbors.

Define: For matching M , if a is matched then we use M(a) to express the other end of the
edge in M .

Define: Given a matching M , a pair (a, b) is unstable, if

· (a, b) ∈ E(G)\M
· a prefers b to it current partner M(a)

· b prefers a to it current partner M(b)

Define: A matching M its stable, if there is No unstable pairs.

Proof: while ∃a ∈ As.t.La 6= ∅. (La is preference of a)

− every a ∈ A proposes to his top choice woman

− each woman looks at her offers and tentatively takes the best offer (and reject the others)

− each rejected man remove the rejecting woman from his preference.

Once a man runs out of his preference, he leaves the game.

By Konig’s theorem: we can assume the edges of G have already been ∆−colored, and we
assume the coloring if f : E(G)→ {1, 2, . . . ,∆}.
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Proof of Goal 1: Define orientation D of L(G), let ve, v
′
e 2 adjacent vertices of L(G), so

e, e′ ∈ E(G) share a common vertex v.

if v ∈ A, we direct (ve, v
′
e), if f(ve) < f(v′e)

if v ∈ B, we direct (ve, v
′
e), if f(ve) > f(v′e)

One can verify that for ∀ve, d+D(ve) ≤ ∆− 1 < ∆.

Fact: An independent set in L(G) is a matching in G.

Proof of Goal 2: First define the preference for L(G).

For any a ∈ A, La = {· · · 3 > 2 > 1 · · · }.
For any b ∈ B, Lb = {· · · 3 < 2 < 1 · · · }.
Let us check that for each U ⊆ V (L(G)), we have a kernel in U .

Let EU be the set of corresponding edges in U from G and EU induced a bipartite subgraph.

By G-S theorem, EU has a stable matching Mu.

We show that MU is a kernel of D[U ]

· MU is independent (by Fact)

· Consider any edge ab ∈ U\MU

Since it can’t be an unstable pair.

⇒ By definition of preference f(ab′) > f(ab) or f(ba′) < f(ba).

⇒ In D, ab→ ab′ or ab→ a′b ⇒ kernel!

La = {· · · b′ > b · · · }, Lb = {· · · a′ > a · · · }
Exercise: if graph G is 2-connected and has a path of length 2S2, then G has a cycle of
length≥ 2s.

• Define: G is k-critical if χ(G) = k, but any proper subgraph H $ G, χC(H) < k.
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• Fact: Any k-critical subgraph is 2-connected.

• Fact: Any k-critical graph is (k-1)-edge-connected.

• Theorem(Alon-Seymour). if G is k-critical, then G has a path of length≥ C · lognlog k and

a cycle of length≥ C ′ ·
√

logn
log k .

−− Best Bound (Shapira-Thomas) such G has a cycle of length≥ logn
100 log k .

−− (Gallai, 1963) ∃ a example k-critical Gs.t. the max cycle of G has length≤ 2(k−1) logn
log(k−2) .

Proof: Take a vertex v, and consider a DSF-tree T with root v. For any u ∈ V (G), define
d(u) to be the depth of u, that is the number of edges in the path of T from u to the root
v. For any e on T , define depth d(e) to be j if e connect a vertex with depth j to a vertex
with depth j + 1.

Claim: T has at most k(k − 1)j−1 edges with depth j.

′′claim⇒ T ′′: let h be the height of DSF-tree T .

n− 1 =
∑h

j=1 # edges with depth≤
∑h

j=1 k(k − 1)j−1 = k · (k−1)
h−1−1

k−1−1 ≤ kh

⇒ h ≥ log(n−1)
log k ≥ C · lognlog k

so G has a path of length≥ k ≥ C · lognlog k

Proof of claim: For ∀e ∈ E(T ), let fe be the (k-1)-coloring on G− e, let e = (vd, vd−1) (
v1−v2−· · ·−vd be the path of T from root to vd) and let F (e) ,

(
fe(v1), fe(v2), · · · , fe(vd)

)
∈

[k − 1]d

We claim: if e and e′ both have depth d, then F (e) 6= F (e′), suppose not, that F (e) = F (e′).

− Then, we can color G− V (Te) by using (k-1)-coloring fe.

− Then, we can color V (Te) by using (k-1)-coloring fe′ .

Now, (*)we check that the function combining by fe′ |V (Te) and fe|G−V (Te) is a proper (k-1)-
coloring of G. {

fe : (G− V (Te))→ [k − 1]

fe′ : V (Te)→ [k − 1]

The only edges from V (Te) to V (G−Te) are these from vertices in vTu, But F (e) = F (e′),
so fe and f(e′) coincide the colors on the vertices of vTu, Thus the combined function is a
proper (k-1)-coloring, contradicting to χ(G) = k. This proves claim(*) and thus claim.

• Hard: If G is 3-connected and has a path of length t, prove that G has a cycle of length ct.

• Theorem(de-Bruiju-Erdos). suppose G is an infinite graph, if any finite subgraph of G
if k-colorable. Then G is also k-colorable.

• Konig’s Infinite lemma. suppose V1, V2, . . . is an infinite sequence of finite sets; suppose
v ∈ Vi+1 is connected to some vertex in Vi, Then there is an infinite path v1 ∈ V1, v2 ∈
V2, · · · , vi ∈ Vi, · · ·
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Proof: There are infinite many paths ending at V1, since V1 is finite, there exists a1 ∈ V1s.t.∃
infinite paths ending at a1, since V2 is finite, ∃a2 ∈ V2 and infinite many paths passing
through a2 and ending at a1

· · · · · ·
Go on this argument, ∃ at least one infinite path passing through v1 ∈ V1, v2 ∈ V2, · · · , vi ∈
Vi, · · ·
Proof of Theorem: (Assume G is countable)

V (G) = N+ = {1, 2, . . .}, let Gi = G[{1, 2, . . .}], let Fi be the set of all legal k-coloring of
Gi, so Fi is nonempty and finite. We connect f ∈ Fi+1 and g ∈ Fi, if f agree with g on
{1, 2, . . .}.
⇒ Thus, each f ∈ Fi+1 connects to some vertices on Fi. By Konig’s Infinite lemma, ∃ an
infinite path passing through , f1 ∈ F1, f2 ∈ F2, · · · , fi ∈ Fi, · · ·
This gives a k-coloring of G!
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