Combinatorial Networks Week 12, June 3-4

- Theorem(Konig). For bipartite G, $\chi'(G) = \Delta(G)$.
- Theorem(Vizing). For general G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.
- Fact: $\chi'_l(G) \geq \chi'(G) \geq \Delta(G)$.
- Theorem(Kahn). For general G, $\chi'_l(G) \leq (1 + o(1))\chi'(G) \leq \Delta(G) + o(\Delta(G))$.
- Theorem(Dinitz \ Galvin). For bipartite G, $\chi'_l(G) = \chi'(G) = \Delta(G)$. Proof. By Konig's Theorem, $\chi'(G) = \Delta(G)$.

It suffices to show:

- **Theorem.** Given bipartite G of maximum degree Δ and list $\mathcal{L} = \{L_e\}_{e \in E(G)}$, where for each $|Le| = \Delta$, there is a legal coloring of E(G) for the list.
- Lemma. Suppose H has an orientation D s.t. for each $v \in V(H)$, $d_D^+(v) \leq |L_v|$, and devery induced subgraph of D has a kernel. Then there is a legal coloring of V(G) from the list $\{L_v\}_{v \in E(G)}$.

Here, we work on L(G), and want to achieve 2 goals,

Goal 1:Find an orientation of L(G) s.t. $d_D^+(v) < \Delta$ for $\forall e \in V(L(G)) = E(G)$.

Goal 2:Any induced subgraph of D has a kernel.

• Theorem(Gale-Shopley). For any bipartite G and set of preferences of V(G), G has a stable matching.

Define: For any $v \in V(H)$, its preference is a linear ordering on its neighbors.

Define: For matching M, if a is matched then we use M(a) to express the other end of the edge in M.

Define: Given a matching M, a pair (a,b) is unstable, if

- $\cdot (a,b) \in E(G)\backslash M$
- · a prefers b to it current partner M(a)
- \cdot b prefers a to it current partner M(b)

Define: A matching M its stable, if there is No unstable pairs.

Proof: while $\exists a \in As.t.L_a \neq \emptyset$. (L_a is preference of a)

- every $a \in A$ proposes to his top choice woman
- each woman looks at her offers and tentatively takes the best offer (and reject the others)
- each rejected man remove the rejecting woman from his preference.

Once a man runs out of his preference, he leaves the game.

By Konig's theorem: we can assume the edges of G have already been Δ -colored, and we assume the coloring if $f: E(G) \to \{1, 2, \dots, \Delta\}$.

Proof of Goal 1: Define orientation D of L(G), let v_e, v'_e 2 adjacent vertices of L(G), so $e, e' \in E(G)$ share a common vertex v.

if $v \in A$, we direct (v_e, v'_e) , if $f(v_e) < f(v'_e)$

if $v \in B$, we direct (v_e, v'_e) , if $f(v_e) > f(v'_e)$

One can verify that for $\forall v_e, d_D^+(v_e) \leq \Delta - 1 < \Delta$.

Fact: An independent set in L(G) is a matching in G.

Proof of Goal 2: First define the preference for L(G).

For any $a \in A$, $L_a = \{ \cdots 3 > 2 > 1 \cdots \}$.

For any $b \in B$, $L_b = \{ \cdots 3 < 2 < 1 \cdots \}$.

Let us check that for each $U \subseteq V(L(G))$, we have a kernel in U.

Let E_U be the set of corresponding edges in U from G and E_U induced a bipartite subgraph.

By G-S theorem, E_U has a stable matching M_u .

We show that M_U is a kernel of D[U]

- $\cdot M_U$ is independent (by Fact)
- · Consider any edge $ab \in U \setminus M_U$

Since it can't be an unstable pair.

- \Rightarrow By definition of preference f(ab') > f(ab) or f(ba') < f(ba).
- \Rightarrow In D, $ab \rightarrow ab'$ or $ab \rightarrow a'b \Rightarrow$ kernel!

$$L_a = \{\cdots b' > b \cdots\}, L_b = \{\cdots a' > a \cdots\}$$

Exercise: if graph G is 2-connected and has a path of length $2S^2$, then G has a cycle of length $\geq 2s$.

• **Define:** G is k-critical if $\chi(G) = k$, but any proper subgraph $H \subsetneq G$, $\chi C(H) < k$.

- Fact: Any k-critical subgraph is 2-connected.
- Fact: Any k-critical graph is (k-1)-edge-connected.
- Theorem(Alon-Seymour). if G is k-critical, then G has a path of length $\geq C \cdot \frac{\log n}{\log k}$ and a cycle of length $\geq C' \cdot \sqrt{\frac{\log n}{\log k}}$.
 - -- Best Bound (Shapira-Thomas) such G has a cycle of length $\geq \frac{\log n}{100 \log k}$.
 - -- (Gallai, 1963) \exists a example k-critical Gs.t. the max cycle of G has length $\leq \frac{2(k-1)\log n}{\log(k-2)}$.

Proof: Take a vertex v, and consider a DSF-tree T with root v. For any $u \in V(G)$, define d(u) to be the depth of u, that is the number of edges in the path of T from u to the root v. For any e on T, define depth d(e) to be j if e connect a vertex with depth j to a vertex with depth j + 1.

Claim: T has at most $k(k-1)^{j-1}$ edges with depth j.

"claim $\Rightarrow T$ ": let h be the height of DSF-tree T.

$$n-1 = \sum_{j=1}^h \# \text{ edges with depth} \le \sum_{j=1}^h k(k-1)^{j-1} = k \cdot \frac{(k-1)^{h-1}-1}{k-1-1} \le k^h$$

$$\Rightarrow h \ge \frac{\log(n-1)}{\log k} \ge C \cdot \frac{\log n}{\log k}$$

so G has a path of length $\geq k \geq C \cdot \frac{\log n}{\log k}$

Proof of claim: For $\forall e \in E(T)$, let f_e be the (k-1)-coloring on G-e, let $e=(v_d,v_{d-1})$ ($v_1-v_2-\cdots-v_d$ be the path of T from root to v_d) and let $F(e) \triangleq \big(f_e(v_1),f_e(v_2),\cdots,f_e(v_d)\big) \in [k-1]^d$

We claim: if e and e' both have depth d, then $F(e) \neq F(e')$, suppose not, that F(e) = F(e').

- Then, we can color $G V(T_e)$ by using (k-1)-coloring f_e .
- Then, we can color $V(T_e)$ by using (k-1)-coloring $f_{e'}$.

Now, (*)we check that the function combining by $f_{e'}|_{V(T_e)}$ and $f_e|_{G-V(T_e)}$ is a proper (k-1)-coloring of G.

$$\begin{cases} f_e : (G - V(T_e)) \to [k-1] \\ f_{e'} : V(T_e) \to [k-1] \end{cases}$$

The only edges from $V(T_e)$ to $V(G-T_e)$ are these from vertices in vTu, But F(e) = F(e'), so f_e and f(e') coincide the colors on the vertices of vTu, Thus the combined function is a proper (k-1)-coloring, contradicting to $\chi(G) = k$. This proves claim(*) and thus claim.

- Hard: If G is 3-connected and has a path of length t, prove that G has a cycle of length ct.
- Theorem(de-Bruiju-Erdos). suppose G is an infinite graph, if any finite subgraph of G if k-colorable. Then G is also k-colorable.
- Konig's Infinite lemma. suppose $V_1, V_2, ...$ is an infinite sequence of finite sets; suppose $v \in V_{i+1}$ is connected to some vertex in V_i , Then there is an infinite path $v_1 \in V_1, v_2 \in V_2, \cdots, v_i \in V_i, \cdots$

Proof: There are infinite many paths ending at V_1 , since V_1 is finite, there exists $a_1 \in V_1 s.t. \exists$ infinite paths ending at a_1 , since V_2 is finite, $\exists a_2 \in V_2$ and infinite many paths passing through a_2 and ending at a_1

.

Go on this argument, \exists at least one infinite path passing through $v_1 \in V_1, v_2 \in V_2, \dots, v_i \in V_i, \dots$

Proof of Theorem: (Assume G is countable)

 $V(G) = \mathbb{N}^+ = \{1, 2, \ldots\}$, let $G_i = G[\{1, 2, \ldots\}]$, let F_i be the set of all legal k-coloring of G_i , so F_i is nonempty and finite. We connect $f \in F_{i+1}$ and $g \in F_i$, if f agree with g on $\{1, 2, \ldots\}$.

 \Rightarrow Thus, each $f \in F_{i+1}$ connects to some vertices on F_i . By Konig's Infinite lemma, \exists an infinite path passing through $f_i \in F_1, f_2 \in F_2, \cdots, f_i \in F_i, \cdots$

This gives a k-coloring of G!