Combinatorial Networks
Week 12, June 3-4

Theorem(Konig). For bipartite G, x'(G) = A(G).

Theorem(Vizing). For general G, A(G) < X'(G) < A(G) + 1.

Fact: xj(G) > X/'(G) > A(G).

Theorem(Kahn). For general G, x;(G) < (14 0(1))x'(G) < A(G) + o(A(G)).
Theorem(Dinitz \ Galvin). For bipartite G, x;(G) = xX'(G) = A(G). Proof. By
Konig’s Theorem, x'(G) = A(G).

It suffices to show:

Theorem. Given bipartite G of maximum degree A and list £ = {Lc}, . B(c)> Where for
each |Le| = A, there is a legal coloring of E(G) for the list.

Lemma. Suppose H has an orientation D s.t. for each v € V/(H), df,(v) < |L,|, andd every
induced subgraph of D has a kernel. Then there is a legal coloring of V(G) from the list

{Lv}veE)-

Here, we work on L(G), and want to achieve 2 goals,

Goal 1:Find an orientation of L(G) s.t. d},(v) < A for Ve € V(L(G)) = E(G).

Goal 2:Any induced subgraph of D has a kernel.

Theorem(Gale-Shopley). For any bipartite G and set of preferences of V(G), G has a
stable matching.

Define: For any v € V(H), its preference is a linear ordering on its neighbors.

Define: For matching M, if a is matched then we use M (a) to express the other end of the
edge in M.

Define: Given a matching M, a pair (a,b) is unstable, if

- (a,b) € E(G)\M

- a prefers b to it current partner M (a)

- b prefers a to it current partner M (b)

Define: A matching M its stable, if there is No unstable pairs.

Proof: while Ja € As.t.L, # &. (L, is preference of a)

— every a € A proposes to his top choice woman

— each woman looks at her offers and tentatively takes the best offer (and reject the others)
— each rejected man remove the rejecting woman from his preference.

Once a man runs out of his preference, he leaves the game.

By Konig’s theorem: we can assume the edges of G have already been A—colored, and we
assume the coloring if f: E(G) — {1,2,...,A}.



Proof of Goal 1: Define orientation D of L(G), let ve,v. 2 adjacent vertices of L(G), so
e, €’ € E(G) share a common vertex v.

if v € A, we direct (ve,vl), if f(ve) < f(vl)

if v € B, we direct (ve,v.), if f(ve) > f(v))

One can verify that for Vue, d},(ve) < A —1 < A,

Fact: An independent set in L(G) is a matching in G.

Proof of Goal 2: First define the preference for L(G).
Foranya€ A, L, ={+-3>2>1---}.

Foranybe B, Ly ={--3<2<1---}.

Let us check that for each U C V(L(G)), we have a kernel in U.
Let Ey be the set of corresponding edges in U from G and Ey induced a bipartite subgraph.
By G-S theorem, Ey; has a stable matching M,,.

We show that M is a kernel of D[U]

- My is independent (by Fact)

- Consider any edge ab € U\ My

Since it can’t be an unstable pair.

= By definition of preference f(ab’) > f(ab) or f(ba') < f(ba).
= In D, ab — ab’ or ab — a’b = kernel!

La:{...b/>b...}’Lb:{...a/>a...}

Exercise: if graph G is 2-connected and has a path of length 252, then G has a cycle of
length> 2s.

e Define: G is k-critical if x(G) = k, but any proper subgraph H & G, xC(H) < k.



e Fact: Any k-critical subgraph is 2-connected.

e Fact: Any k-critical graph is (k-1)-edge-connected.

e Theorem(Alon-Seymour). if G is k-critical, then G has a path of length> C' - igéz and
a cycle of length> C” -,/ }ggz

—— Best Bound (Shapira-Thomas) such G has a cycle of length> 10181%'

—— (Gallai, 1963) 3 a example k-critical Gs.t. the max cycle of G has length< 2(112&1%2%”.

Proof: Take a vertex v, and consider a DSF-tree T' with root v. For any u € V(G), define
d(u) to be the depth of u, that is the number of edges in the path of T from w to the root
v. For any e on T, define depth d(e) to be j if e connect a vertex with depth j to a vertex
with depth j + 1.

Claim: T has at most k(k — 1)7~! edges with depth j.

"claim=- T": let h be the height of DSF-tree T.

n—1=Y" % edges with depth< 3" k(k — 1)1 = . $ZU=l < ph

log(n—1) logn
:>h2 log k ZC log k

so G has a path of length> k > C - log n

log k
Proof of claim: For Ve € E(T), let f. be the (k-1)-coloring on G — e, let e = (vg4,v4—1) (
v1—vg— - -—v, be the path of T' from root to vg) and let F(e) £ (fe(v1), fe(va), -+, fe(va)) €

[k — 1)

We claim: if e and ¢’ both have depth d, then F'(e) # F(e’), suppose not, that F(e) = F(e).
— Then, we can color G — V(T¢) by using (k-1)-coloring fe.

— Then, we can color V(T¢) by using (k-1)-coloring fr.

Now, (*)we check that the function combining by fe|y(7,) and fe|g_v(r,) is a proper (k-1)-

coloring of G.

fe : (G=V(Te)) — [k —1]
fe’ : V(Te) — [k‘ — 1]

The only edges from V(T¢) to V(G — T.) are these from vertices in vTu, But F(e) = F(e'),
so fe and f(e’) coincide the colors on the vertices of vTu, Thus the combined function is a
proper (k-1)-coloring, contradicting to x(G) = k. This proves claim(*) and thus claim.

e Hard: If G is 3-connected and has a path of length ¢, prove that G has a cycle of length ct.

e Theorem(de-Bruiju-Erdos). suppose G is an infinite graph, if any finite subgraph of G
if k-colorable. Then G is also k-colorable.

e Konig’s Infinite lemma. suppose Vi, Vo, ... is an infinite sequence of finite sets; suppose
v € Viy1 is connected to some vertex in V;, Then there is an infinite path v; € Vi,v9 €
‘/27”' , Vg E‘/’Lv



Proof: There are infinite many paths ending at V7, since V] is finite, there exists a; € Vys.t.3
infinite paths ending at aj, since Vs is finite, dag € V5 and infinite many paths passing
through ay and ending at a;

Go on this argument, 3 at least one infinite path passing through vy € Vi,v0 € Vo, -+ Jv; €

Proof of Theorem: (Assume G is countable)

V(G) = Nt ={1,2,...}, let G; = G[{1,2,...}], let F; be the set of all legal k-coloring of
Gy, so F; is nonempty and finite. We connect f € F;11 and g € Fj, if f agree with g on
{1,2,...}.

= Thus, each f € F;y1 connects to some vertices on F;. By Konig’s Infinite lemma, 3 an
infinite path passing through , fi € Fi, fo € Fo,--- , fi € F;,---

This gives a k-coloring of G!



